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For  the  location of Fourier  peak max ima  from the values (1950) seems no t  to have been published so far and is 
of electron densi ty  q calculated at grid points corre- therefore reported here. 
sponding to dl-, d2-, da-fold division of the a-, b-, c-axes 
respectively, Shoemaker  et al. (1950) approximate  to the  
shape of a peak near  its m a x i m u m  by means of the Gaus- 
sian function 

=exp (p-½rx ~ -½su~--~tz~ _ ~ 1 _  
+ u x  + v y  + w z  + l x y  + m x z  + n y z )  . ( 1 ) 

The parameters  p, r etc. are de te rmined  by least-squares 
from values of ~ at  points of a 3 × 3 × 3  grid (Fig. l) 
surrounding the  maximum,  the  central  point  (~) being 
taken  as origin and the grid intervals along a, b and c 
being used as units  of x, y and z. In  the  case of two- 8 
dimensional  Fourier  data,  the  Gaussian approximat ion 
is somewhat  simpler (e.g. in hO1 and hK1 generalized 
projections s =v  = l  = n  = 0) and the determinat ion of six 
parameters  involves a 3 ×3 grid (~1 . . . . .  ~9, Fig. 1). 
Useful features of this me thod  of locating max ima  are 
t h a t  the  lattice need  not  be orthogonal  and the  peaks 
may  deviate  considerably from spherical (or circular) 
shape, but  these advantages  appear initially to be offset 
by a complexi ty  of data  t r ea tmen t  which is greater  than  Fig. 1. The grid numbering to which Table 1 refers. 
t ha t  involved in other  methods  of peak location (e.g. 
Ladell  & Katz,  1954; Megaw, 1954). This complexi ty The least-squares parameter  determinat ions  yield ex- 
largely disappears, however,  when a systematic procedure pressions 
has been established for evaluat ing the p, r etc. from the p =  l/kp.~,  ci, p ln @~, r =  l/lcr.~ C~,r ln ~ e tc . ,  (2) 
various ~. This aspect of the me thod  of Shoemaker  et al. i i 

Table 1. The values of Ic and c~ for  the 27.point (A), 19-point (B) and 9-point (C) cases 
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i.e. each parameter  involves a single cons tant  k and a 
series of constants  cz, one for each of the grid points  
used in the least-squares t rea tment .  I f  all twenty-seven 
points  are weighted equally then,  for the grid numbered 
as shown in .Fig. 1, the values of k and the c~ for each 
parameter  are those in rows A, Table 1. If,  however, 
the  eight corner grid points  are omit ted  in case thei r  
0-values do no t  satisfy the Gaussian approximat ion  
adequate ly  (Donohue & Trueblood, 1952), then  equal 
weight ing of the  other n ineteen gives the  k and c~ in 
rows B, Table 1. For  the two-dimensional  instance noted  
earlier, equal weight ing of the nine points  now involved 
gives the results shown in rows C. The different pa ramete r  
determinat ions are thus  various simple l inear combina- 
t ions of the logari thms of the @-values a t  the  different 
grid points.  A pre l iminary  check on the adequacy of 
equat ion  (1) near  the peak centre is provided by  the 
agreement  between p and In ~I. 

Using the conditions O~/Ox etc. = 0 a t  the peak centre, 
the  posit ion of the centre wi th  respect to grid point  ~ 
is defined b y  the x-, y-, z-values sat isfying the simul- 
taneous equations 

-- lx + sy--  n z = v  
- - m x - - n y  + tz =w . (3) 

Wi th  (X1, Y~, Z~) the coordinates in ~ of this grid point ,  
the  corresponding coordinates of the peak centre are 
therefore (X~ +xa/d~, Y~ +yb/d~, Z~ +ze/da). In  the two- 
dimensional  case in Table 1, the  analogous equations 
for x and z reduce convenient ly  to 

x = (ut +mw)/(rt --m~), z =(um +rw)/ (r t - -m ~) . (3a) 

The central  peak curvatures  in e./i-5 (or e.A -4) are 

Aa~ = - r~oD~ 2, A ~  = - s~oDe ~, A n = - tQoDa 2 
Ah~: =IQoD1D2, Ah~ =mQoD1Da, Ak~ =nooD~D3, (4) 

where D 1 =dl/a etc. and ~0 is the  value of equat ion (1) 
for the x, y, z from equations (3). 

In  the 9-point case, experience here has  shown t h a t  the  
t ime involved per  peak,  including tabula t ion  of log- 
ar i thms,  is about  10-15 minutes  on a desk calculator:  
a similar t ime for the  27-point case has  been no ted  b y  
Ibers  (1956), presumably  after  the  ] n ~  have  been 
obtained. The simple na ture  of the  various l inear com- 
binat ions of da ta  shown in Table 1 is such t h a t  this  
method  of peak location is readi ly adapted  to a computer  
(Sparks et al., 1956; Stephenson, 1960). 
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Vegard (1929) assigned a-ni t rogen to the  space group 
P213-(T4), and gave values for the two parameters  which 
defined the positions of the eight ni t rogen a toms in a 
un i t  cell wi th  a =5.67 ~ (from kX.) a t  20 °K. This struc- 
ture, a l though the intramolecular  N - N  distance had  the 
reasonable value of 1.07 A, was odd in t h a t  the  molecules 
lay in positions displaced in an  unsymmetr ica l  way  from 
cubic close packing, l~uhemann (1932) did not, observe 
either the (110) or the (310) reflections required by  P213 
and reported b y  Vegard, and pointed out  t h a t  space 
group Pa3-(Ta 6) was also a possible one, bu t  made  no 
a t t e m p t  to determine the single posit ional parameter  of 
t h a t  space group; he found a = 5 . 6 8 + 0 . 0 2  A (from kX.) 
a t  20 °K., in agreement  wi th  Vegard.  Bolz et al. (1959), 
examined a-ni t rogen condensed a t  4.2 °K., found a--- 
5.644+_0.005 ~ and a l inear coefficient of expansion of 
2 x 10 -a deg. -1. (These values lead to a = 5.662 A a t  20 °K.) 
Not  observing either (110) or (310), t hey  concluded t h a t  
the space group was Pa3, and provisionally reported the 
value x = 0 . 0 5 4  for the parameter .  This value yields 
1.056 /~ for the N - N  distance. They  s ta ted  t h a t  their  
observed X- ray  intensities,  a l though in be t te r  agreement  
for the -Pa3 s t ructure  than  for the P213 structure,  were 
not  ye t  ful ly convincing, the  difficulties arising, ap- 

parent ly ,  from s t ructura l  faults  due to too low an anneal-  
ing tempera ture  (13 °K.). Very  recently,  HGrl & Mar~on 
(1961) obtained electron diffraction da ta  from th in  films 
of ni t rogen a t  20 °K. They  found a=5.661+-0.008 /~, 
assumed space group Pa3 (the two crucial reflections 
were absent),  bu t  did no t  a t t e m p t  an  independent  
determinat ion of the posit ional parameter .  Ins tead,  t hey  
adopted the value N - N  of 1.094/~ (Herzberg, 1955), i.e., 
x=0.0558,  and found tha t  a + 2 0 %  deviat ion from this  
internuclear  distance 'would have  shown very  dis t inct  
differences ~ven in visual est imates  of the diffraction 
r ing intensit ies. '  

Al though the internuclear  distance of 1.094 A is prob- 
ably  more reliable than  one obtained by  considerat ion 
of the ra ther  l imited powder diffraction data,  there  is, 
nevertheless,  interest  in refining the electron diffraction 
in tens i ty  da ta  in order to find out  wha t  in ternuclear  
distance is obtained, and how it  compares wi th  t h a t  found 
in the free gas molecule. 

The visual ly es t imated intensit ies of the t w e n t y  lines 
tabula ted  by  H6rl  & Mar ten  were t rea ted by  the  me thod  
of least-squares, wi th  s imultaneous var ia t ion of the  
posit ional parameter ,  x, of Pa3  and the scale factor, k. 
The quan t i t y  minimized was 


