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For the location of Fourier peak maxima from the values  (1950) seems not to have been published so far and is
of electron density ¢ calculated at grid points corre- therefore reported here.

sponding to d;-, d,-, d;-fold division of the a-, b-, c-axes
respectively, Shoemaker et al. (1950) approximate to the

shape of a peak near its maximum by means of the Gaus- 25 6
sian function >
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The parameters p, r etc. are determined by least-squares 5
from values of p at points of a 3x3x3 grid (Fig. 1) 1g |
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is somewhat simpler (e.g. in k0! and hKI generalized 4

projections s =v =l =n=0) and the determination of six 2;

parameters involves a 3x3 grid (g, ..., Fig. 1).

Useful features of this method of locating maxima are a Yy ] 23
that the lattice need not be orthogonal and the peaks 9??
may deviate considerably from spherical (or circular) b ?

shape, but these advantages appear initially to be offset ¢

by a complexity of data treatment which is greater than Fig. 1. The grid numbering to which Table 1 refers.

that involved in other methods of peak location (e.g.
Ladell & Katz, 1954; Megaw, 1954). This complexity
largely disappears, however, when a systematic procedure
has been established for evaluating the p, r ete. from the =1/k ci »ln r=1/k Xe¢; »1n 0; ote. 2
various g. This aspect of the method of Shoemaker et al. p=1 pzi: A / T% for 10 04 - 2

The least-squares parameter determinations yield ex-
pressions

Table 1. The values of k and c; for the 27-point (A), 19-point (B) and 9-point (C) cases
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A 27 7 4 4 1 4 1 1 4 1 4 1 1 1 1 4 1 1 1 1 -2 2 2 22 .2 2 2 2
p{B 2l 9 4 4 -1 4 -1 .l 4 -1 4 -1 -1 o1 a1 4 -1 -1 -1 -

cC 9 5 2 2 -l 2 .1 a1 2 -l

A 9 2 -1 -1 2 2 -1 -1 2 .l 2 .1 .l 2 2 2 .1 -1 2 2 -1 <1 @1 <1 a1 <1 .l oL
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s (B 21 10 6 6 2 6 2 2 6 2 -1 -5 -5 .5 <5 .1 .5 .5 .5 .5

A 9 2 2 2 -1 -1 <1 1 1 .l 2 2 2 -1 .1 2 2 2 -1 1 -1 <1 <1 o1 -1 -1 1 -1
t {B 21 10 6 6 -5 -1 -5 .5 .1 .5 6 2 2 .5 -5 6 2 2 -5 .5

C 2 2 2 -1 -1 -1 -1 -1 -1

A 18 0 S S | 0 1 1 0 -l 0 1 -1 [] 0 0 1 -1 0 0 -1 1 1 < - 1 1 oI
u {B 10 0 1 -1 -1 0 1 1 0 -1 ] 1 -1 [ 0 0 1 -1 0 0

Cc 6 0 I -1 -1 0 1 1 0 -1

!A 18 0 0 0 [ 0 ] 0 0 0 -1 -1 .1 -1 -1 1 1 1 1 1 <1 o1 -1 .1 1 1 1 1
v {B l0 [ 0 ] 0 0 ] 0 0 -1 -1 .1 -1 -1 1 1 1

A 18 ] 0 0 -1 .1 .1 1 1 1 ] 0 0 -l 1 0 0 o -1 -1 -1 1 1 <1 .l 1 1
wiB 10 0 0 0o -1 - -1 1 1 1 0 o 0 -1 1 0 0 0 -1

c 6 0 0 o -1 -1 -1 1 1 1
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c 4 ] 0 ] 1 0 -l 1 0 .l
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l.e. each parameter involves a single constant £ and a
series of constants ¢;, one for each of the grid points
used in the least-squares treatment. If all twenty-seven
points are weighted equally then, for the grid numbered
as shown in Fig. 1, the values of k and the ¢; for each
parameter are those in rows A, Table 1. If, however,
the eight corner grid points are omitted in case their
o-values do not satisfy the Gaussian approximation
adequately (Donohue & Trueblood, 1952), then equal
weighting of the other nineteen gives the k& and ¢; in
rows B, Table 1. For the two-dimensional instance noted
earlier, equal weighting of the nine points now involved
gives the results shown in rows C. The different parameter
determinations are thus various simple linear combina-
tions of the logarithms of the g-values at the different
grid points. A preliminary check on the adequacy of
equation (1) near the peak centre is provided by the
agreement between p and In g,.

Using the conditions dg/dx etc. =0 at the peak centre,
the position of the centre with respect to grid point g,
is defined by the z-, y-, z-values satisfying the simul-
taneous equations

re— ly—mz=u
— lz+sy—nz=v
—mr—ny+ tz=w. 3)

With (X,, Y,, Z,) the coordinates in A of this grid point,
the corresponding coordinates of the peak centre are
therefore (X, +za/d,, Y,+yb/d,, Z, +zc/d;). In the two-
dimensional case in Table 1, the analogous equations
for z and z reduce conveniently to
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z =(ut +mw)/(rt —m?), z=(um+rw)/(rt—m?). (3a)
The central peak curvatures in e.A~5 (or e.A~*) are

Apn= —10eD\2, Agx= —s500D,2, Ay = —1tg,Dy?
Ahk =lQoD1D,_, Am =mgoD,D3, Ak¢=ngnD2D3 > (4)

where D, =d,/a ete. and g, is the value of equation (1)
for the z, ¥, z from equations (3).

In the 9-point case, experience here has shown that the
time involved per peak, including tabulation of log-
arithms, is about 10-15 minutes on a desk calculator:
a similar time for the 27-point case has been noted by
Ibers (1956), presumably after the Ilng; have been
obtained. The simple nature of the various linear com-
binations of data shown in Table 1 is such that this
method of peak location is readily adapted to a computer
(Sparks et al., 1956; Stephenson, 1960).
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Vegard (1929) assigned w«-nitrogen to the space group
P2,3—-(T*), and gave values for the two parameters which
defined the positions of the eight nitrogen atoms in a
unit cell with @ =5-67 A (from kX.) at 20 °K. This struc-
ture, although the intramolecular N-N distance had the
reasonable value of 1-07 A, was odd in that the molecules
lay in positions displaced in an unsymmetrical way from
cubic close packing. Ruhemann (1932) did not observe
either the (110) or the (310) reflections required by P2,3
and reported by Vegard, and pointed out that space
group Pa3—(T5%) was also & possible one, but made no
attempt to determine the single positional parameter of
that space group; he found a =568 +0:02 A (from kX.)
at 20 °K., in agreement with Vegard. Bolz et al. (1959),
examined «-nitrogen condensed at 4-2 °K., found a=
5-644 +0-005 A and a linear coefficient of expansion of
2 x 10~* deg.~*. (These values lead to @ =5-662 A at 20 °K..)
Not observing either (110) or (310), they concluded that
the space group was Pa3, and provisionally reported the
value =0-054 for the parameter. This value yields
1.056 A for the N-N distance. They stated that their
observed X-ray intensities, although in better agreement
for the Pa3 structure than for the P2,3 structure, were
not yet fully convincing, the difficulties arising, ap-

parently, from structural faults due to too low an anneal-
ing temperature (13 °K.). Very recently, Horl & Marton
(1961) obtained electron diffraction data from thin films
of nitrogen at 20 °K. They found a=5-661+0-008 A,
assumed space group Pa3 (the two crucial reflections
were absent), but did not attempt an independent
determination of the positional parameter. Instead, they
adopted the value N-N of 1-094 A (Herzberg, 1955), i.e.,
2 =0-0558, and found that a +209, deviation from this
internuclear distance ‘would have shown very distinet
differences even in visual estimates of the diffraction
ring intensities.’

Although the internuclear distance of 1-094 A is prob-
ably more reliable than one obtained by consideration
of the rather limited powder diffraction data, there is,
nevertheless, interest in refining the electron diffraction
intensity data in order to find out what internuclear
distance is obtained, and how it compares with that found
in the free gas molecule.

The visually estimated intensities of the twenty lines
tabulated by Hérl & Marton were treated by the method
of least-squares, with simultaneous variation of the
positional parameter, », of Pa3 and the scale factor, k.
The quantity minimized was



